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Abstract

We present a new method, the polygonal area mapping (PAM) method, for tracking a non-diffusive, immiscible material
interface between two materials in two-dimensional incompressible flows. This method represents material areas explicitly as
piecewise polygons, traces characteristic points on polygon boundaries along pathlines and calculates new material areas
inside interface cells via polygon-clippings in a discrete manner. The new method has very little spatial numerical diffusion
and tracks the interface singularities naturally and accurately. In addition to high accuracy, the PAM method can be directly
used on either a structured rectangular mesh or an unstructured mesh without any modifications. The mass conservation is
enforced by heuristic algorithms adjusting the volume of material polygons. The results from a set of widely used benchmark
tests show that the PAM method is superior to existing volume-of-fluid (VOF) methods.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Over the past 40 years, three major formulations have been developed and used for interface tracking in
multi-phase simulations; namely, front-tracking methods, level set methods and VOF methods.

The front-tracking method treats the interface as a jump of density and explicitly marks the interface by a
fixed number of points. Each marker is tracked by solving an ordinary differential equation (ODE). This
method works well if the line segments connecting the markers have roughly equal lengths and do not intersect
each other. Unfortunately, even the most trivial velocity fields can distort the interface and the accuracy of this
method can deteriorate dramatically. To remedy this problem, complicated surgical operations, such as
attaching and detaching boundary elements, have been suggested so as to maintain some degrees of mesh reg-
ularity as the interface deforms. Interested readers can find an discussion of these surgical operations in [36]
and an state-of-art review of the front-tracking method in [31].
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Totally different from front-tracking methods, level set methods [21,19,20] define an function / to implicitly

represent the interface, a typical choice for / being the signed distance from the interface. A partial differential
equation (PDE) of / is used to evolve the interface. Level set methods have become increasingly popular in a
diverse group of applications including optimal design, computer-aided design (CAD), optimal control, and
computer graphics. One difficulty of level set methods, particularly concerning fluid flow interfaces, is the lack
of mass conservation: existing methods conserve mass only in a global sense to a fraction of one percent.

For a certain material W, VOF methods define the color function as
f ðxÞ ¼
1 if there is material W at x;

0 otherwise;

�
ð1Þ
and the volume fraction of material W in cell ði; jÞ as
fi;j ¼
R R

Ci;j
f ðx; yÞdxdy

DxDy
; ð2Þ
where Ci;j ¼ ½xi�1=2; xiþ1=2� � ½yj�1=2; yjþ1=2� denotes the cell area. For simplicity we assume Dx ¼ Dy ¼ h, thus

cell centers are located at ½xi; yj�
T , vertical edges at xi�1=2 ¼ xi � h=2 and horizontal edges at

yj�1=2 ¼ yj � h=2. The interface in cell ði; jÞ is represented both implicitly by the volume fraction fi;j and explic-

itly by the interface locus, often a linear function or a parabola. In VOF literature, either the advective form of
ft þ u � rf ¼ 0 ð3Þ

or the equivalent conservative form
ft þr � ðf uÞ ¼ 0 ð4Þ

in a divergence-free flow is often referred to as the governing equation of VOF methods. However, the use of
(3) or (4) is dubious since the color function defined in (1) is discrete and thus non-differentiable in time and in
space.

During each time step, VOF methods track the interface by two sub-steps. In the first advection step, a new
value of volume fraction, f nþ1

i;j , is calculated based on f n
i;j and the current interface locus; in the second recon-

struction step, the new interface locus is determined solely by f nþ1
i;j in a neighborhood of cell ði; jÞ.

The advection schemes of VOF methods fall into two categories: operator splitting methods and unsplit
methods. Because of its simplicity, the operator splitting approach is dominant in the early development of
VOF methods, such as SLIC [17], Chorin [4], SOLA-VOF [10], FCT–VOF [26] and Youngs’ method [34].
A relatively recent splitting scheme, EI-LE [27], features an Eulerian implicit step followed by an Lagrangian
explicit one. This method conserves mass exactly with no flotsam (small fragments of materials surrounded by
a different material) and no under/overshoots. In recent years unsplit methods [23,8,9] have become more pop-
ular. These methods are often based on explicit tracing of pathlines. One can find the root of these methods in
the theory of the multi-dimensional hyperbolic conservation law [13]. More recently, Lopez [14] proposed the
edge-matched flux polygon advection (EMFPA) method. This method constructs edge-matched flux polygons
at cell faces to calculate the flux. A later improvement [15] allows the interface to be represented by two non-
contiguous line segments in a cell for tracking thin fluid structures. Lagrangian markers are placed at the cen-
ters of these interface segments to locate and orient the interface.

Early VOF methods reconstruct the interface with a piecewise constant function aligned to one of the coor-
dinates. Since the constructed interface can only be either horizontal or vertical, these methods are crude in
accuracy and they generate spurious flotsam even in simple flows. Nowadays the dominant reconstruction
schemes are those so-called piecewise linear interface calculation (PLIC). Youngs’ method [34] calculates
the interface normal by taking gradient of the volume fraction values; this method does not reconstruct all
linear interfaces exactly. In contrast, the least-squares VOF interface reconstruction algorithm (LVIRA)
[24] can reconstruct a linear interface exactly. Under the constraint of the reconstructed volume having the
same volume fraction in cell ði; jÞ, this method places the linear function in a way to minimize the reconstruc-
tion error in the 3� 3 stencil centered at this cell. To reduce the computation time of the least-square mini-
mization, the Efficient LVIRA (ELVIRA) [22] method only calculates nine candidates for the interface normal
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via the combination of backward, central and forward differentiations of fi;j. The reconstruction residual is
then calculated for each candidate and the one that has the smallest residual is chosen as the solution. Both
LVIRA and ELVIRA reconstruct an linear interface within a cell exactly.

Apart from the three major methods, researchers have been trying to combine the best features of the three
major formulations, resulting in a few hybrid methods, e.g. the coupled level set with VOF method (CLSVOF)
[30], the hybrid level-contour front-tracking method [28], and the hybrid particle level set method [5]. In
another hybrid marker-VOF method [1,2], the interface is described by a continuous chain of line segments
connecting Lagrangian markers advected along pathlines. Grid intersection markers locate the interface on
the cell edges and ensure continuity while mass conservation markers are redistributed uniformly along the
interface for local area-preserving.

Despite the successes of existing interface tracking methods, further improvements are still in need. This is
particularly true when the interface contains large curvature or singular points. In this case, spurious numer-
ical diffusion always rounds sharp corners and prevent convergence to the exact solution. In solid–fluid inter-
action applications, this is often unacceptable.

Attempting to overcome the above shortcomings, we have developed a new method, called the polygonal
area mapping (PAM) method. In this method, material areas are explicitly represented by polygons. The
velocity field is considered as a mapping of these polygons from the beginning of a time step to the end of
it. The material area to be advected into a certain cell is calculated by discrete Boolean set operations defined
on polygons in a discrete manner such that no calculus is involved. As a result of restricting spatial operation
to these polygon-clipping operations, the PAM method is almost free of numerical diffusion. Another original
feature of the PAM method is its independence of the mesh topology. Although numerical tests in this paper
are carried out on structured rectangular grids, the PAM method can be applied to unstructured meshes with-
out any modification. Also, the PAM method can be extended to three-dimensional space via Boolean set
operations on polyhedra [7]. In this paper, we focus on the PAM method in two-dimensional space and we
will report the three-dimensional extension in the future.

The remainder of this paper is organized as follows. In Section 2 we introduce the formulation of the PAM
method. In Section 3 we summarize the main steps of the PAM method and details the heuristic algorithms for
mass conservation. In Section 4 a number of benchmark interface tracking problems are performed to test the
stability, accuracy, and efficiency of the new method; the results are compared to those of existing VOF meth-
ods. Finally we draw our conclusions in Section 5.
2. Formulation

2.1. Interface representation

A computational cell is called an interface cell if it contains more than one material, otherwise it is called a
pure cell. An interface candidate cell is either an interface cell or a pure cell adjacent to an interface cell. For
example, in Fig. 1 cells ½i� 2; j� 2�; ½i� 2; j� 1�; ½i� 1; j� 1�; ½i� 1; j�; ½i; j�; ½iþ 1; j�; ½iþ 1; jþ 1� are interface
cells and all other cells are pure cells; all cells except ½iþ 1; j� 2� are interface candidate cells. Note that the
sets of the three types of cells changes in time since the locus of the interface moves.

Let p0; p1; . . . ; pn�1 be n points, we establish the indexing convention of i as i mod n, implying a cyclic order-
ing of the points, thus pn ¼ p0; pnþ1 ¼ p1 and so on. The line segments p0p1; . . . ; pipiþ1; . . . ; pn�1pn bounds a sim-

ple polygon [18] if and only if:
pipiþ1\�piþ1piþ2 ¼ fpiþ1g i ¼ 0; . . . ; n� 1;

pipiþ1\�pjpjþ1 ¼ ; 1 < modðji� jj; nÞ < n� 1;

(
ð5Þ
where \� denote the ordinary set-intersection operation. The points are the vertexes of the polygon and the line
segments are the edges of the polygon. A vertex and its two adjacent edges defines two angles, the one that intersects
the interior of the polygon is called the internal angle. A vertex is concave if its internal angle is strictly bigger thanp,
otherwise it is convex. A convex polygon P contains the line segment pq if both endpoints p and q belong to P:



Fig. 1. Material representation on a structured rectangular mesh. The thick polygonal line represents the interface that separate water
(hatched area) from air. Shaded polygon M½i;j� is the area occupied by water (W) in cell ½i; j�. Shaded polygon C½i�2;j� is the area of cell
½i� 2; j�, also the area occupied by air in this cell. Labels 1, 2, and 3 indicate a pure water cell, a pure air cell, and an interface cell,
respectively. The quadrilateral in cell ½i� 2; j� 2� represent an air bubble trapped in water.
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P is convex() ap þ ð1� aÞq 2 P 8p; q 2 P; a 2 ½0; 1�: ð6Þ

The convex hull of a set of points is the smallest convex polygon that contains the point set [18].

A simple polygon represents a simply-connected area, in which every closed curve in it can be continuously
deformed to a point. We denote such an area by an uppercase calligraphic letter, e.g. the area occupied by
material W in cell ½i; j� is denoted by M½i;j� and the area of cell ½i� 2; j� denoted by C½i�2;j�, as shown by the
shaded polygons in Fig. 1.

In addition to (5), we make the following assumptions on the polygon we are using.
pi is a convex vertex of P ) q 2 P 8q 2 Dðpi; pi�1; piþ1Þ; ð7aÞ
pi is a concave vertex of P ) q 62 interiorðPÞ 8q 2 Dðpi; pi�1; piþ1Þ; ð7bÞ
where Dðpi; pi�1; piþ1Þ denote the triangle formed by vertices pi; pi�1; piþ1. (7) limits our attention to a family of
‘well-shaped’ polygons. Two examples violating (7) are shown in Fig. 2.

In general, one simple polygon is not enough to describe the material area in a fixed cell, as in the cases of
cell ½i� 2; j� 2� and cell ½iþ 1; jþ 1� in Fig. 1. Let Pi be a simple polygon with counter-clockwise orientation,
Fig. 2. Examples of polygons violating (7).
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representing a ‘positive’ area; let Hj be a simple polygon with clockwise orientation, representing a ‘negative’
area (a hole). We define an abstract data type, the set of simple polygons (SSP),
Fig. 3.
(a) P \
M ¼ fP1;P2; . . . ;Psp ;H1;H2; . . . ;Hshg ð8Þ
to represent the two-dimensional area of the tracked material in an interface cell
M ¼ [sp

i¼1Pið Þ n [sh
j¼1Hj

� �
; ð9Þ
where sp; sh are non-negative integers and the regularized Boolean set operations [11] are defined as
P[�Q ¼ fp : p 2 P; or; p 2 Qg; ð10aÞ
P [Q ¼ closureðinteriorðP[�QÞÞÞ; ð10bÞ
Pn�Q ¼ fp : p 2 P and p 62 Qg; ð10cÞ
P nQ ¼ closureðinteriorðPn�QÞÞÞ: ð10dÞ
In other words, a regularized Boolean set operation can be obtained by taking closure of the interior of the
point set resulting from the corresponding ordinary Boolean set operation (marked by *). The set-intersection
has similar definition. Regularized Boolean set operations eliminate lower dimensional features, such as iso-
lated vertices and antennas and guarantee the representation to be physically meaningful. As shown in Fig. 3,
the Boolean set operations are also discrete in that there are no differentiation associated. A generic polygon-
clipping (GPC) algorithm [32] and a modified GPC library [16] are used to perform these operations.

The number of simple polygons in M and the number of vertices in a simple polygon should be minimal so
that the representation is unique.
i 6¼ j) Pi \ Pj ¼ ;; ð11aÞ
i 6¼ j) Hi \Hj ¼ ;; ð11bÞ
Hi 2M) 9Pj 2M; s:t: Hi 	 Pj; Pj nHi is not a simple polygon; ð11cÞ
8Pi;Hj 2M; no three consecutive vertices are collinear: ð11dÞ
(11a) and (11b) ensure that polygons of the same sign are pairwise disjoint. (11c) requires a ‘hole’ polygon to
be properly contained in a ‘positive’ polygon. (11d) gets rid of redundant vertices. Consequently, the total vol-
ume of M can be easily calculated by
kMk ¼
Xsp

i¼1

kPik �
Xsh

j¼1

kHjk; ð12Þ
Boolean set operations on polygons. P is the rectangle and Q is the triangle, the shaded region represents the result of an operator.
Q, (b) P nQ, (c) P [Q, and (d) P ^Q.
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and the volume of a simple polygon, Pðp0; p1; . . . ; pnP�1Þ, is given by
kPk ¼ 1

2

XnP�3

i¼0

ðpiþ1 � piÞ � ðpiþ2 � piþ1Þ
�����

�����; ð13Þ
where nP denotes the number of vertices of P and ‘�’ the cross product of two vectors.
We collect (5), (7), and (11) as the representation invariant of the SSP and enforce them on the concrete data

structure all the time.
Compared to simple polygons, SSPs has two advantages: (i) SSPs are closed under the Boolean set oper-

ations; (ii) any two-dimensional compact point sets can be approximated by a SSP arbitrarily well. For an
interface cell in a two-phase interface tracking problem, we thus only store a SSP for one material, from which
the SSP of the other material and the interface can be deduced. An integer label is also attached to each cell in
the domain to indicate the types of materials contained in that cell, as shown in Fig. 1.

2.2. Area mapping by the velocity field

A particle p ¼ pðtnÞ ¼ ½xpðtnÞ; ypðtnÞ�T labeled with its position at time tn changes its location in subsequent
time according to the velocity field,
dxp

dt
¼ uðxp; tÞ: ð14Þ
To find out where pðtnÞ came from, we define another ODE system to trace back p in time,
dxp

dt
¼ uBðxp; tÞ; ð15Þ
where
uBðxp; tÞ ¼ �uðxp; tÞ: ð16Þ

The image and preimage of pðtnÞ with respect to a time interval dt are defined by forward tracing ð �!Þ and
backward tracing ð � Þ, respectively,
pðtn; dtÞ
����!

¼ pðtn þ dtÞ ¼ pðtnÞ þ
Z tnþdt

tn

uðpðtÞ; tÞdt; ð17Þ

pðtn; dtÞ
 ����

¼ pðtn � dtÞ ¼ pðtnÞ þ
Z tnþdt

tn

uBðpðtÞ; tÞdt; ð18Þ
where the time increment dt is always positive. A simple polygon also has its image and preimage defined from
those of its vertices. Similarly, a SSP MðtnÞ has the corresponding image Mðtn; dtÞ

������!
and preimage Mðtn; dtÞ

 ������
,

defined from those of its element polygons.
The underlying velocity field can be regarded as a mapping of two-dimensional compact point sets repre-

sented by polygonal areas. For incompressible flow, the image and preimage of a polygonal area is homomor-

phic. In other words, a simple polygon remains topologically a disk through a divergence-free mapping. From
the above observations we derive the name of our new method.

Let MðtÞ denote the area of the interested material in the computational domain at time t, the two-phase
immiscible interface tracking problem can be formulated as the determination of MðT Þ from the given velocity

field uðx; tÞ ðt 2 ½t0; T �Þ and the initial area Mðt0Þ.
3. Algorithm

In the following, we shall present our new method on a structured mesh ðDx ¼ Dy ¼ hÞ with uniform time
steps tn ¼ nk where k is the time step size. These assumptions are not necessary in the formulation of the PAM
method, but are used here only for the convenience of exposition.



Q. Zhang, P.L.-F. Liu / Journal of Computational Physics 227 (2008) 4063–4088 4069
At the initial time, all cells in the domain are labeled according to the initial condition Mðt0Þ. The material
area in an interface cell is also calculated by
Fig. 4.
dots (s
M0
½c� ¼Mðt0Þ \ C½c�; ð19Þ
where the subscript [c] is the index of that cell and C½c� is the shell polygon of cell [c].

3.1. Major steps

We describe the steps of our algorithm for one time step. The PAM method tracks the interface by applying
these steps to all interface candidate cells in every time step.

Step 1 – trace backward to obtain cell preimages

For each vertex of C½c�, we use (18) to obtain its preimage. To improve accuracy, we also compute the mid-
point preimages of the edges of C½c�. These preimages of vertices and midpoints define the preimage of the cell

polygon. This step is illustrated in Fig. 4(a), where the cell preimage, Cnþ1
½c�
 ��

(a shorthand for C½c�ðtnþ1; kÞ
 �������

) is rep-

resented by vertical hatches.
The polygonal area mapping algorithm. (a)–(d) correspond to the four sub-steps of the PAM method. Solid dots (d) and hollow
) represent image points and preimage points, respectively. Dashed lines denote pathlines.
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In our implementation, pairs of images and preimages are associated in a map data structure. Two maps are
maintained: the backward tracing map has image points as the keys and their preimages as the values; the for-
ward tracing map has the same pairs of images and preimages, but has the preimages as the keys and images as
the values. In forming the preimage of a cell polygon, we first check the backward tracing map for any vertex
preimages that have already been calculated. If a preimage is not found, the standard fourth-order Runge–
Kutta (RK4) formula is used for numerical integration of (18) and the result is stored in the two maps for
future use. In this way, the preimage of any vertex is only calculated once. Since grid intersection vertices
of a cell are shared by many neighboring cells and the Runge–Kutta integration is the most expensive part
of the algorithm, the use of the maps reduces the computational time considerably.

Step 2 – calculate material area preimages

Let f½b�g denote the index set of the cells inside the 3-by-3 stencil centered at cell [c], i.e.
f½b�g ¼ f½i� 1; j� 1�, ½i� 1; j�, ½i� 1; jþ 1�, ½i; j� 1�, ½i; j�, ½i; jþ 1�, ½iþ 1; j� 1�, ½iþ 1; j�, ½iþ 1; jþ 1�g.
The union of material areas in the neighborhood of cell [c] is given by[
N
n
½c� ¼

f½b�g
Mn
½b�; ð20Þ
where Mn
½b� denotes the material SSP inside cell [b] at time tn.

Cnþ1
½c�
 ��

contains all the particles to be advected into cell [c] at the end of the time step, these particles may or
may not be of the material being tracked. N

n
½c� contains all the particles of the tracked material at the beginning

of the time step. The intersection of these two polygons yields the set of points {p} that satisfies:

� p is of the tracked material;
� pðtn; kÞ
����!

2 C½c�.

The material area preimage is thus obtained by
Mnþ1
½c�

 ���
¼ Cnþ1

½c�
 ��
\N

n
½c�: ð21Þ
This step is illustrated in Fig. 4(b) where N
n
½c� is represented by horizontal hatches and Mnþ1

½c�
 ���

by cross hatches.
For proper results of (21), we require that the Courant number be no greater than one so that the neighbor-
hood material area N

n
½c� covers all possible particles for cell [c] in this time step.

Step 3 – trace forward material area preimages

Because of (16)–(18), the image of the preimage of a point is itself. In other words, tracing backward fol-

lowed by tracing forward with identical dt yields the same point. The image of Mnþ1
½c�

 ���
is thus Mnþ1

½c� , which can

be obtained by applying (17) to each vertex of Mnþ1
½c�

 ���
.

In Fig. 4(c), Mnþ1
½c�

 ���
is represented by the 0� cross hatches while Mnþ1

½c� by the 45� cross hatches. Some vertices

images of Mnþ1
½c�

 ���
, e.g. p0 and q1, can be obtained by looking up the forward tracing map since their preimages,

p0
 and q1

 , are already calculated in step 1. Other vertex images, e.g. q2; q3 and q4, are calculated by the RK4
formula. Note that the line segments q2q3 and q3q4 in Fig. 4(c) define the interface locus in that cell.

Step 4 – simplify representation and conserve mass

Although the RK4 formula generates very small errors for point locations, in general the mass difference
between the image SSP and preimage SSP
d½c� ¼ Mnþ1
½c�

��� ���� Mnþ1
½c�

 ������� ���� ð22Þ
is not zero. To conserve mass for incompressible flow, the following must be enforced:
Mnþ1
½c�

��� ��� ¼ Mnþ1
½c�

 ������� ����: ð23Þ



Q. Zhang, P.L.-F. Liu / Journal of Computational Physics 227 (2008) 4063–4088 4071
A related stability issue is that the number of simple polygons in a SSP, sp; sh, as well as the number of points
in one polygon, might increase quickly in a complicated velocity field. To maintain stability and efficiency, we
simplify the representation and conserve mass by the following steps:

(1) delete all the hole polygons from Mnþ1
½c� ;

(2) if sp > 1 or (7) is violated, we apply a two-dimensional convex hull algorithm [6] on the finite point set
[sp

i¼1VPi where the set of all vertices of polygon P is denoted by
Fig. 5.
enforc
VP ¼ VðPÞ ¼ fp0; . . . ; pnP�1g; ð24Þ
(3) move interface points of PCH so that kPCHk ¼ kMnþ1
½c�

 ���
k, where PCH is the simple polygon resulting from

the convex hull algorithm. In Section 3.2, we explain in full details Algorithms 2 and 3 for generic geo-
metric configurations;

(4) introduce a global constant nmax as the maximal number of points allowed in a simple polygon. If
nPCH

> nmax, keep deleting the least significant points from PCH until nPCH
¼ nmax, with the significance

of a vertex pi being measured by kDðpi; piþ1; pi�1Þk;
(5) set Mnþ1

½c� ¼ fPCHg and call Algorithm 2 or Algorithm 3 again to satisfy (23).

An example illustrating the above steps is shown in Fig. 5. Note that we do allow more than one polygons
in the material SSP in major Step 2 and Step 3. A premature simplification before major Step 4 generates large
errors for merging. This is why we do not use one simple polygon as the representation of the material area in
an interface cell.

More often than not, only one material polygon needs to be adjusted for mass conservation after tracing
forward material preimages. An example is shown in Fig. 4(d).

3.2. Adjustment of a simple polygon under the constraint of another

Let P and P0 be the polygons before and after the adjustment, respectively, C the cell polygon. The follow-
ing crucial observations guide the design of the heuristic algorithms.

� The change of P should be correct so that P0 
 C.
� The change of P should be minimized so that P 	 P0 for expanding and P0 	 P for shrinking.
� The change of P should reduce nP as much as possible so that the number of points that has to be deleted is

minimal.
� Only points on the interface can be moved, among which those inside the cell are moved before those on the

cell boundaries to maintain maximal continuity of the interface.
� To maintain ‘shape’ stability and ensure (7), we prefer P0 to be a convex polygon rather than a concave

polygon.

We capture the constraint of C on the expansion of P in the following definitions.

Definition 1 (Expansion area). Given two convex polygons P 	 C, the jth expansion area, Ej, associated with
the jth edge of P is
Step 4 of the PAM method for two material polygons. After taking the convex hull of disjoint polygons, mass conservation is
ed by Algorithm 2 or Algorithm 3 in Section 3.2. See Fig. 9(b) and (c) for a different scenario.
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EjðP; CÞ ¼ C \RjðP; CÞ; ð25Þ

where Rðq0; q1Þ denotes the ray starting from q0 and shooting in the direction of q0 � q1:
Rðq0; q1Þ ¼ fpjp ¼ q0 þ aðq0 � q1Þ; a P 0g; ð26Þ

and RjðP; CÞ is the area bounded by Rðpj; pj�1Þ;Rðpjþ1; pjþ2Þ and pjpjþ1.

The convexity of P implies the angle between Rðpj; pj�1Þ and Rðpjþ1; pjþ2Þ to be less than p, thus permits no
ambiguity of RjðP; CÞ, although it might be unbounded. Clearly Ej ¼ ; if and only if pjpjþ1 	 oC.

Definition 2 (Expansion point). If pjpjþ1 	 oC, we say the jth expansion point, GjðP; CÞ, does not exist;
otherwise GjðP; CÞ is the vertex of Ej satisfying
kDðGj; pj; pjþ1Þk ¼ inf
q2VðEjÞ; q 62pjpjþ1

kDðq; pj; pjþ1Þk: ð27Þ
we also call T j ¼ DðGj; pj; pjþ1Þ the jth expansion triangle.

Four typical cases of the expansion point and expansion area are shown in Fig. 6.
From the above definitions, it is clear that GjðP; CÞ 2 C. By (6) the convexity of C implies that the expanded

polygon is within C:
eP ¼ P [ T j 
 C: ð28Þ
e
Claim 3. P is convex.

Proof. An edge of a convex polygon P is part of a supporting line, of which all interior points of P lie to the
same side [33]. Take the half-space of line pjpj�1 with P inside and that of line pjþ1pjþ2 also with P inside,
denote their intersection by K. K is clearly convex since the intersection of convex sets is convex [33]. By Def-
initions 1 and 2, pjpjþ1 divides K into two parts K1 and K2 such that P 
 K1 and T j 
 K2. If two points q0; q1

are both inside P or T j, q0q1 	 eP because of the convexity of P and T j. Consider q0 2 P and q1 2 T j,
q0q1 	 K because of the convexity of K. The line segment from q0 in K1 to q1 in K2 thus must intersect the
common boundary pjpjþ1, say, at q2. The convexity of eP is thus proved by q0q2 	 P 	 eP , q1q2 	 T j 	 eP ,
and (6). h

Definition 4 (Classification of expansion points). A stable expansion point (SEP) is an expansion point that
satisfies
n~P 6 nP; ð29Þ

otherwise it is called an unstable expansion point (UEP).

Claim 5. If GjðP; CÞ is a UEP,
GjðP; CÞ 62 Rðpj; pj�1Þ;
GjðP; CÞ 62 Rðpjþ1; pjþ2Þ:

(
ð30Þ
Proof. Since pjpjþ1 is a common edge of P and T j, the only possible new vertex is Gj. Suppose
GjðP; CÞ 2 Rðpj; pj�1Þ, then pj; pj�1, and Gj are collinear. However, after the insertion of Gj, pj will be removed
after fulfilling the representation invariant (11d). Thus n~P ¼ nP, which is a contradiction to Definition 4. h

Claim 6. If GjðP; CÞ is a UEP, GjðP; CÞ is a vertex of C.

Proof. By Definitions 1 and 2, there are three types of vertices in Ej. (i) pj and pjþ1, (ii) vertices of C, (iii)
intersection of oC to either Rðpj; pj�1Þ or Rðpjþ1; pjþ2Þ. (i) is not possible by Definition 2. (iii) is not possible
by Claim 5. h

An example of UEP is shown in Fig. 6(d), all other expansion points in Fig. 6 are SEPs.
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Definition 7 (Least expansion triangle). A least expansion triangle (LET) is the smallest triangle among
existing expansion triangles:
Proce

D

are

1 a
2 r
3 i
4 p
5 r

Fig. 6.
triangl
T minðP; CÞk k ¼ inf T jðP; CÞ
�� �� ð1 6 j 6 n and GjðP; CÞ existsÞ: ð31Þ
In the following, we will omit the parameters of a function form if no ambiguity is generated by doing so, e.g.
T j ¼ T jðP; CÞ.
dure AdjustTriangle ðp0; p1; p2; q; dÞ
ata:The maximal volume change kDðq; p1; p2Þk � kDðp0; p1; p2Þk and the expected volume change d
both positive or negative.

Result: p0 is changed; the actual volume change is returned.
 kDðq; p1; p2Þk � kDðp0; p1; p2Þk
 d=a

f r > 1 then r ¼ 1

0  rqþ ð1� rÞp0

eturn ra
A simple procedure,AdjustTriangle, tries to change a triangle by moving its first point p0 to a fixed point q

until p0 reaches q or the expected volume change d is fulfilled. The actual volume change is returned. The algo-
rithms of expanding and shrinking a simple polygon use AdjustTriangle as the fundamental building block.

Algorithm 2 formalizes the steps of expanding a simple polygon. This algorithm seeks to reduce nP at each
step by adjusting concave triangles or the LETs.

Claim 8. Given a convex polygon C, another simple polygon P 	 C, and a volume increment
0 < d 6 kCk � kPk, Algorithm 2 changes P to P0 such that kP0k ¼ kPk þ d and P 	 P0 
 C.
Typical cases of expansion points and expansion areas. The rectangle represents the cell polygon. Hatched area is the jth expansion
e.
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Proof. Volume of a polygon is a continuous function with respect to vertex locations. kP0k ¼ kPk þ d can
thus be enforced by AdjustTriangle and the fact that we do not change more than one triangle at the same
time. P 	 P0 holds because each invoking of AdjustTriangle only appends extra area to P. In lines 2–4,
(7b) implies Dðpi; piþ1; pi�1Þ \ P ¼ ; and the convexity of C implies Dðpi; piþ1; pi�1Þ 	 C, which guarantees
P0 
 C; In lines 6–19, P0 
 C holds because of (28). Since expansion triangles are non-degenerating, the value
of d is always reduced, thus the while loops eventually terminates. By Claim 3, once the execution passes line 5.
P can never be concave, this realizes line 7. The conditions in line 8–18 are based on Claim 5. By Definition 2,
the non-existence of any expansion triangles implies pjpjþ1 	 oC for 1 6 j 6 nP, which in turn implies P ¼ C.
Thus the while loops terminates properly. h

Algorithm 2. Expand a simple polygon
Data: convex polygon C; simple polygon P 	 C; a volume increment 0 < d 6 kCk � kPk
Result:change P to P0 s.t. kP0k ¼ kPk þ d, P 	 P0 
 C

1 while d > 0 and at least one concave vertex exists. do

2 i the index of the least significant concave vertex
3 d dþ AdjustTriangleðpi; pi�1; piþ1; ðpi�1 þ piþ1Þ=2;�dÞ
4 if kPðpi; piþ1; pi�1Þk ¼ 0 then delete pi from P.
5 end

6 while d > 0 do

7 i the index of LET
8 if Gi 62 Rðpi; pi�1Þ and Gi 2 Rðpiþ1; piþ2Þ then

9 d d� AdjustTriangleðpiþ1; pi; piþ1;Gi; dÞ
10 else if Gi 2 Rðpi; pi�1Þ and Gi 62 Rðpiþ1; piþ2Þ then
11 d d� AdjustTriangleðpi; piþ1; pi;Gi; dÞ
12 else if Gi 2 Rðpi; pi�1Þ and Gi 2 Rðpiþ1; piþ2Þ then

13 d d� AdjustTriangleðpi; piþ1; pi;Gi; dÞ
14 if kPðpi; piþ1;GiÞk ¼ 0 then delete piþ1 from P.
15 else

16 insert q ¼ pi into P between pi and piþ1

17 d d� AdjustTriangleðq; pi; piþ1;Gi; dÞ
18 end
19 end
We show a polygon expanded by different values of d in Fig. 7. Algorithm 2 almost always reduces the num-
ber of vertices in a simple polygon except in the case of a UEP, which corresponds to lines 16–17 of Algorithm
2. However, because of Claim 6, the number increase is bounded by the number of vertices in C. We emphasis
that this increase is over all time steps. In fact, the case shown in Fig. 6(d) is very rare, our numerical tests also
confirmed this.

The shrink of P is easier than the expansion of P in that the constraint of C is much weaker.

Definition 9 (Convex shrink triangle). Let P be a convex polygon, the jth convex shrink triangle (VST)
associated with the jth vertex pj is
Sj ¼ Dðpj; pjþ1; pj�1Þ: ð32Þ
Definition 10 (Concave shrink triangle). Let P be a concave polygon, pj a concave vertex, and pk an adjacent
convex vertex. The concave shrink triangle (CST) associated with an edge pjpk ðk ¼ j� 1Þ is defined as
Sj;jþ1 ¼
Dðpj; pjþ1; pjþ2Þ if Rðpj; pj�1Þ\�pjþ1pjþ2 ¼ ;;
Dðpj; pjþ1; qÞ if Rðpj; pj�1Þ\�pjþ1pjþ2 ¼ fqg:

(
ð33Þ



Fig. 7. Expanding a simple polygon. The rectangle is a cell with kCk ¼ 25, the shaded area is P. The correspondence to Algorithm 2 is:
(a) ? (b): lines 3–4; (b) ? (c) ? (d): lines 12–14; (d) ? (e): lines 10–11; (e) ? (f): lines 15–17 and lines 12–13; (f) ? (g): lines 15–17;
(g) ? (e): lines 12–13.
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Sj;j�1 is similarly defined by changing each ‘+’ to ‘�’ and ‘�’ to ‘+’ in all the subscripts in (33).

Definition 11 (Least shrink triangle). For a concave polygon P, the least shrink triangle (LST), Sminðs0; s1; s2Þ,
is the CST with the smallest volume. For a convex polygon, the LST is the VST with the smallest volume.

Note that s0; s1; s2 are place holders corresponding to the points in (32) and (33) in the same order. In prac-
tice, we only consider vertices pj 62 oC until no such vertices exists in P. This reflects our preference of interior
points in adjusting the material polygon. Also, pj has to be a vertex on the interface, otherwise spurious inter-
face will be created by adjusting the associated triangle.

Algorithm 3 formalizes the steps of shrinking a simple polygon. The proof of correctness is similar to that
of Claim 8 and is a much easier one. The key points are (7a) and the convexity of P. In contrast to Algorithm
2, the algorithm always reduces the number of vertices of the polygon, since there is no insertion of new
vertices.

Algorithm 3. Shrink a simple polygon
Data: convex polygon C; simple polygon P 	 C; a volume decrease kPk 6 d < 0
Result: change P to P0 s.t. kP0k ¼ kPk þ d, P0 	 P 	 C

1 while d < 0 do

2 Sminðs0; s1; s2Þ  the LST of P
3 if Smin is a CST then
4 d d� AdjustTriangleðs1; s0; s2; s2; dÞ
5 if kDðs1; s0; s2Þk ¼ 0 then delete s1 from P
6 else

7 q ðs1 þ s2Þ=2
8 if s0s1 	 oC then q s1

9 else if s0s2 	 oC then q s2

10 d d� AdjustTriangleðs0; s1; s2; q; dÞ
11 if kDðs0; s1; s2Þk ¼ 0 then delete s1 from P
12 end

13 end



Fig. 8. Shrinking a simple polygon. The rectangle is a cell with kCk ¼ 25. The correspondence to Algorithm 3 is: (a) ? (b): lines 4;
(b) ? (c): lines 4–5; (c) ? (d) ? (e) ? (f): lines 7,10–11; (f) ? (g) ? (h): lines 8–11.
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A polygon shrunken by different values of d is shown in Fig. 8. It is clear that each step in the above algo-
rithm trims a triangle off the simple polygon, thus the new polygon is always a subset of the original one.

Although Algorithms 2 and 3 has worst-case complexity of Oðn2
PÞ, d½c� in (22) is typically much smaller than

the total volume of the material area, thanks to the high accuracy of the RK4 formula. In addition, nmax, the
maximum number of points in a material polygon, is set to a number much smaller than 1=h. Therefore the
overhead caused by these algorithms is insignificant.

In essence, Algorithms 2 and 3 are simple greedy algorithms with the local optimal goals to make material
polygons more stable and efficient in the sense that

� each time a LET or a LST is found, d is consumed as little as possible to maximize the possibility of reduc-
ing number of vertices. This changes the polygon towards a more stable one.
� the least significant point is always deleted first. Physically this corresponds to omitting the smallest detail

the polygon can resolve. This changes the polygon towards a more efficient one.

Including mass conservation, the advantages of the volume adjusting algorithms are thus threefold.

3.3. Merging of two material polygons

We exemplify the PAM method by showing how the algorithms work for the merging of two material poly-
gons, as shown in Fig. 9(a).

If the Courant number is large enough, the two image polygons will have some overlapping area, as in
Fig. 9(b). After fulfilling the representation invariant (11), the two polygons will be united into one, which
is adjusted further for mass conservation, as in Fig. 9(c). We call the above scenario a successful merging.
In this case, polygon union and volume adjusting serve as the merging ‘mechanisms’.

However, if the Courant number is not big enough, as in Fig. 9(d), the two image polygons will stay disjoint
after the tracing forward, as in Fig. 9(e). According to the simplification steps, a convex hull is calculated to
approximate the material SSP, as in Fig. 9(f), before the mass conservation is enforced in Fig. 9(g). We call the
above scenario an unsuccessful merging. In this case, the convex hull algorithm instead of polygon union is
used.

It is clear from Fig. 9 that an unsuccessful merging generates much more error than a successful merging.
Even worse, an unsuccessful merging can happen again and again, given the Courant number is small enough.



Fig. 9. Merging of two material polygons. (a)–(c) represent a successful merging with Cr ¼ 0:6. (d)–(g) represent a unsuccessful merging
with Cr ¼ 0:2. Steps corresponds to the major steps in Section 3.1. The cell preimage is enclosed in the dashed lines. Hatched areas
represent material preimages in (a) and (d), and material images in other sub-figures.

Q. Zhang, P.L.-F. Liu / Journal of Computational Physics 227 (2008) 4063–4088 4077
Also, finer grids tend to have more unsuccessful merging than coarser grids for a fixed Courant number
because of a larger number of interface cells. These are confirmed in the deformation tests in Section 4.4.

4. Tests

In this section, we test the accuracy and efficiency of the new PAM method on structured rectangular grids
for various different scenarios: translation, rotation, shear, breaking up, and merging, all of which have been
widely accepted as benchmark tests for interface tracking methods ([26,25,8,9,1,3,2,27,23,14,15]). We also
compare the PAM method to other state-of-art VOF methods using two different error measurement criteria.
One is the relative distortion of the material area [26]:
Er ¼
P

i;j fi;jðT Þ � f T=k
i;j

��� ���P
i;jf

0
i;j

; ð34Þ
where fi;jðT Þ is the exact volume fraction for cell ½i; j� at the end of the test t ¼ T and f n
i;j is the computational

result at time step n; for the PAM method, f n
i;j is calculated by f n

i;j ¼ kM
n
i;jk=kC

n
i;jk. The other measures the

absolute difference between the exact and the computed results [25]:
Eg ¼ h2
X

i;j

fi;jðT Þ � f T=k
i;j

��� ���; ð35Þ
which is also called the geometrical error in [1,2].
Apart from the interface tracking errors, the relative mass conservation error is defined as
Em ¼

P
i;jfi;jðT Þ �

P
i;jf

T=k
i;j

��� ���P
i;jf

0
i;j

: ð36Þ



Fig. 10. Initial setup of translation tests.
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It follows from (34) and (36) that Em 6 Er. Thus, we do not have to consider Em so long as the interface track-
ing error is small enough. However, a large value of Em=Er points to the right direction how a tracking method
can be improved: one should improve the mass conservation before improving the tracking method itself.

4.1. Translation test

Translation tests measure the most basic feature of an interface tracking method. In these tests [26], a hol-
low square, a tilted hollow square and a hollow circle are advected in two constant velocity fields, resulting six
different cases. The initial setup and other test parameters are shown in Fig. 10. The material area and the
shape should remain unchanged through the translation process.

The errors of the interface tracking are measured by (34) and shown in Table 1.
Table 1
Results of the translation tests

Methods Square (0�) Square (26.57�) Circle

Velocity field u1 ¼ ½1; 0�T
VOF SLIC 8.42e�8 1.46e�2 1.30e�2

Hirt–Nichols 1.03e�8 6.91e�2 4.55e�2
FCT–VOF 3.89e�8 2.32e�2 1.28e�2
Youngs 1.08e�3 5.35e�3 3.08e�3
Stream/Puckett [8] 1.61e�3 4.57e�3 1.42e�3
DDR/ELVRIA 1.65e�3 4.80e�3 2.98e�3

PAM 3.50e�15 1.33e�4 3.04e�13

Velocity field u2 ¼ ½2; 1�T
VOF SLIC 1.32e�1 1.08e�1 9.18e�2

Hirt–Nichols 6.86e�3 1.60e�1 1.90e�1
FCT–VOF 1.63e�8 8.15e�2 3.99e�2
Youngs 2.58e�2 3.16e�2 2.98e�2
Stream/Puckett[8] 3.33e�2 3.15e�2 6.96e�3
DDR/ELVIRA 1.50e�1 1.45e�1 1.54e�1

PAM 7.77e�15 4.43e�4 4.30e�11

Results of the first four methods are taken from [26]; those of DDR/ELVIRA are from the authors’ implementation.
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Fig. 11. Results of the author’s implementation of DDR/ELVIRA for the translation tests under velocity u ¼ ½2; 1�T . Material area
polygons instead of contour lines of fi;j are shown in the subplots and all other figures hereafter.
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Most of the advection schemes of VOF methods predict accurately the values of fi;j for this trivial velocity
field, but the reconstruction schemes do not have the same accuracy because of two reasons: the limitation of
the representation of material interface within a cell as a piecewise linear function and the numerical diffusion
resulting from utilizing the information of neighboring cells in reconstructing the material interface. Conse-
quently, singularities of the material interface, e.g. the corners of a square, are rounded and lost. In
Fig. 11, we show the results of the DDR method [9] coupled with ELVIRA [22]. The corners are rounded
by ELVIRA and the material area is ‘‘squashed” in the corner direction because the DDR method neglects
the fluxes in the cell-diagonal directions.

In contrast, the PAM method preserves the corners of the square as shown in Fig. 12 and yields more accu-
rate results. In fact, the ODE solver calculates point locations to the machine precision for this constant veloc-
ity field; furthermore, the interface does not deform during the translation. Therefore, the mass conservation is
satisfied naturally and there is no need to adjust the material polygons. In the cases that only one polygon is
sufficient to represent the material area in a cell, the PAM method should yield ‘exact’ solution close to
machine round-off error. This is confirmed by the results of the hollow square case and the hollow circle case,
as shown in Table 1. However, the tilted hollow square has larger errors than the other two cases. The reason
is that cells near the concave corners of the inner square sometimes have two separate material bodies (see
Fig. 5(a) for an example), which get caught by the simplification steps. In this tests, the convex hull algorithm
is the sole source of numerical errors.
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Fig. 12. Results of the PAM method for the translation tests under velocity u ¼ ½2; 1�T .
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4.2. Zalesak disk rotation test

First introduced by Zalesak [35] and later used by Rudman [26] and many other researchers, this test places
a slotted circle in a pure rotation velocity field with the following stream function:
Table
Result

Metho

VOF

PAM

The fir
wðx; yÞ ¼ �x
2
½ðx� xOÞ2 þ ðy � yOÞ

2�; ð37Þ
where O ¼ ½xO; yO�
T is the center of the rotation and x is a constant angular velocity. The setup of this test and

other parameters are shown in Fig. 13. After a full revolution of 2p rotation, the slotted circle returns to its
initial location.

The interface tracking errors are measured by (34) and shown in Table 2. The results of the PAM method
are better than those of all the listed VOF methods. In Fig. 14, the material interface of the PAM method at
four time instants are compared to those of the DDR/ELVIRA method. As shown in the subplots (b), (d), (f),
and (h), numerical diffusion in the DDR/ELVIRA method rounds the corners of the slot. The errors generated
at the corners of the slot propagate to other interface cells and grow larger for longer simulation time. This is a
common feature of all VOF methods since the reconstruction step utilizes the information of the nearby cells.
Fig. 13. Initial setup of Zalesak’s rotation disk test.

2
s of the Zalesak rotation test

ds Er

SLIC 8.38e�2
Hirt–Nichols 9.62e�2
FCT–VOF 3.29e�2
Youngs 1.09e�2
Stream/Puckett [8] 1.00e�2
DDR/ELVIRA 5.25e�2
P/ELVIRA [3] 1.00e�2
Lagrangian/Quadratic fit + continuity [27] 4.16e�3

3.97e�4

st four lines are taken from [26]. DDR/ELVIRA is implemented by the authors.
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In contrast, there is much less numerical diffusion using the PAM method, as shown in the subplots (a), (c),
(e), and (g) in Fig. 14. There are no observable change at the two convex corners; as for the two concave cor-
ners, they are rounded to a small degree. In addition, the number of nearby cells influenced by the numerical
diffusion is much less than that of DDR/ELIVIRA methods. For this nonlinear velocity field, the forward
tracing and the backward tracing are not exact, even though the material interface does not deform under
the pure rotation. The numerical diffusion of the PAM method in this test comes not only from the convex
hull approximation, but also from the tendency in Algorithms 2 and 3 to get rid of a concave vertex from
the material polygon. This is different from the translation tests.

4.3. Rider–Kothe reversed single vortex test

In this test [25], a non-uniform vorticity field with the following stream function:
wðx; yÞ ¼ 1

p
sin2ðpxÞ si